
Lecture 11
Hashing

For Efficient Look-up Tables



Lecture Outline
 What is hashing?
 How to hash?
 What is collision?
 How to resolve collision?
 Separate chaining
 Linear probing
 Quadratic probing
 Double hashing

 Load factor
 Primary clustering and secondary clustering
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What is Hashing?
 Hashing is an algorithm (via a hash function) 

that maps large data sets of variable length, 
called keys, to smaller data sets of a fixed length

 A hash table (or hash map) is a data structure 
that uses a hash function to efficiently map keys 
to values, for efficient search and retrieval

 Widely used in many kinds of computer software, 
particularly for associative arrays, database 
indexing, caches, and sets
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Table ADT

 Hence, hash table supports the Table ADT in 
constant time on average for the above 
operations (terms and conditions apply…)
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Operations Sorted 
Array

Balanced 
BST Hashing

Insertion O(n) O(log n) O(1) avg

Deletion O(n) O(log n) O(1) avg

Retrieval O(log n) O(log n) O(1) avg

CS2010 stuff



The easiest form of hashing

Direct Addressing Table



Example: SBS Bus Services
 Operations
 Retrieval: find(num)
 Find the bus route of bus service number num

 Insertion: insert(num)
 Introduce a new bus service number num

 Deletion: delete(num)
 Remove bus service number num

 If bus numbers are integers 0 – 999, 
we can use an array with 1000 entries

[ CS1020E AY1617S1 Lecture 11 ] 6

:
:

data_998998

data_22

0

1

999

Now there are more bus operators in SG

Of course for now we assume that bus numbers 
don’t have variants, like 96A, 96B…, etc



Example: SBS Bus Services
// a[] is an array (the table)

insert(key, data)
a[key] = data

delete(key)
a[key] = NULL

find(key)
return a[key]
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:
:

data_998998

data_22

0

1

999



Direct Addressing Table: Limitations
 Keys must be non-negative integer values
 What happen for key values 151A and NR10?

 Range of keys must be small

 Keys must be dense
 i.e. not many gaps in the key values

 How to overcome these restrictions?
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The true form of hashing…

Hash Table



Hashing: Ideas
 Map large integers to smaller integers

 Map non-integer keys to integers
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Hash Table: Phone Numbers Example

66752378

68744483

h 237

h 336
68744483,

data

66752378,
data

h is a hash function
h(x) = x%997

Note: we must store the 
key values.  Why?



Hash Table: Operations
// a[] is an array (the table)
// h is a hash function

insert(key, data)
a[h(key)] = data

delete(key)
a[h(key)] = NULL

find(key)
return a[h(key)]
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However, this does not work for all cases! Why?



Hash Table: Collision
 A hash function may map different 

keys to the same slot
 A many-to-one mapping and

not one-to-one
 E.g. 66754372 hashes to the same 

location of 66752378

 This is called a “collision”, when 
two keys have the same hash value
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66754372 h

68744483,
data

66752378,
data

237



Two Important Issues
 How to hash?

 How to resolve collisions?
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How to create a good one?

Hash Functions



Hash Functions and Hash Values
 Suppose we have a hash table of size N
 Keys are used to identify the data
 A hash function is used to compute a hash value
 A hash value (hash code) is
 Computed from the key with the use of a hash function to 

get a number in the range 0 to N−1
 Used as the index (address) of the table entry for the data
 Regarded as the “home address” of a key

 Desire: The addresses are different and spread 
evenly over the range

 When two keys have same hash value — collision
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Good Hash Functions
 Fast to compute, O(1)
 Scatter keys evenly throughout the hash table
 Less collisions
 Need less slots (space)
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Bad Hash Functions: Example
 Select Digits
 e.g. choose the 4th and 8th digits of a phone number
 hash(67754378) = 58
 hash(63497820) = 90

 What happen when you hash Singapore’s house 
phone numbers by selecting the first three digits?
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Perfect Hash Functions
 Perfect hash function is a one-to-one mapping between 

keys and hash values. So no collision occurs
 Possible if all keys are known
 Applications: compiler and interpreter search for reserved 

words; shell interpreter searches for built-in commands
 GNU gperf is a freely available perfect hash function 

generator written in C++ that automatically constructs 
perfect functions (a C++ program) from a user supplied 
list of keywords

 Minimal perfect hash function: The table size is the same 
as the number of keywords supplied
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How to Define a Hash Function?
 Uniform hash function
 Division method
 Multiplication method
 Hashing of strings
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Uniform Hash Functions
 Distributes keys uniformly in the hash table
 If keys are uniformly distributed in [0, X), we map 

them to a hash table of size m (m < X) using the 
hash function below
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),0[ k is the key value
[ ]: close interval
( ): open interval
Hence, 0 ≤ k < X
  is the floor function 



Division Method (mod operator)
 Map into a hash table of m slots
 Use the modulo operator (%) to map an integer 

to a value between 0 and m−1
 n mod m = remainder of n divided by m, where n and m

are positive integers

 The most popular method
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mkkhash  % )( 



How to Pick m (table size)?
 If m is power of two, say 2n, then (key mod m) is 

the same as extracting the last n bits of the key
 If m is 10n, then the hash value is the last n digit 

of the key
 Both are not good, why?
 Rule of thumb: Pick a prime number,

close to a power of two, to be m
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Multiplication Method
1) Multiply key by a fraction A (between 0 and 1)
2) Extract the fractional part
3) Multiply by m, the hash table size

 The reciprocal of the golden ratio
= (sqrt(5) − 1) / 2 = 0.618033  
seems to be a good choice for A
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Hashing of Strings: Example

hash1(s) {  // s is a string
sum = 0
for each character c in s {
sum += c     
// sum up the ASCII values of all characters

}
return sum % m  // m is the hash table size

}
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Hashing of Strings: Example
hash1("Tan Ah Teck")
= ('T' + 'a' + 'n' + ' ' +

'A' + 'h' + ' ' +
'T' + 'e' + 'c' + 'k') % 11  
// hash table size is 11 

= (84 + 97 + 110 + 32 +
65 + 104 + 32 +
84 + 101 + 99 + 107) % 11

= 825 % 11
= 0
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Hashing of Strings: Example
 All 3 strings below have the same hash value.  

Why?
 "Lee Chin Tan"
 "Chen Le Tian"
 "Chan Tin Lee"

 Problem: The hash value is independent of the 
positions of the characters
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Improved Hashing of Strings
 Better to “shift” the sum before adding the next 

character, so that its position affects the hash code
 Polynomial hash code

hash2(s) {
sum = 0
for each character c in s {
sum = sum * 37 + c     

}
return sum % m

}
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Handling the inevitables…

Collision Resolution



Probability of Collision
 von Mises Paradox (The Birthday Paradox): 

“How many people must be in a room before the 
probability that some share a birthday, ignoring the year 
and leap days, becomes at least 50 percent?”
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Q(n) = Probability of unique birthday for n people

=

P(n) = Probability of collisions (same birthday) for n people
= 1 – Q(n)

P(23) = 0.507

Hence, you need only 23 people in the room!

365
1365...

365
362

365
363

365
364

365
365 


n



Probability of Collision
 This means that if there are 23 people in a room, 

the probability that some people share a birthday 
is 50.7%!

 In the hashing context, if we insert 23 keys into a 
table with 365 slots, more than half of the time 
we will get collisions! Such a result is counter-
intuitive to many

 So, collision is very likely!
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Collision Resolution Techniques
 Separate Chaining
 Linear Probing
 Quadratic Probing
 Double Hashing
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Separate Chaining
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0

m−1

k4,data

k1,data

k3,data

k2,data

Use a linked-list to store collided keys. 
Always insert at the beginning
(or at the back) of a list. Why?



Load Factor
 n: number of keys in the hash table
 m: size of the hash tables — number of slots

 : load factor
  = n / m
 Measures how full the hash table is.
 In separate chaining, table size equals to the 

number of linked lists, so  is the average length
of the linked lists
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Separate Chaining: Performance
 Hash table operations
 insert (key, data)
 Insert data into the list a[h(key)]
 Takes O(1) time

 find (key)
 Find key from the list a[h(key)]
 Takes O(1+) time on average

 delete (key)
 Delete data from the list a[h(key)]
 Takes O(1+) time on average
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If  is bounded by 
some constant, then 
all three operations 
are O(1)



Open Addressing
 Separate chaining is a close addressing system 

as the address given to a key is fixed 
 When the hash address given to a key is open 

(not fixed), the hashing is an open addressing 
system

 Open addressing
 Hashed items are in a single array 
 Hash code gives the home address 
 Collision is resolved by checking multiple positions 
 Each check is called a probe into the table 
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Linear Probing
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0

1

2

3

4

5

6

hash(k) = k mod 7

Here the table size m = 7

Note: 7 is a prime number.

In linear probing, 
when there is a 
collision, we scan 
forwards for the the
next empty slot
(wrapping around 
when we reach the 
last slot).



Linear Probing: Insert 18
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0

1

2

3

4

5

6

hash(k) = k mod 7

hash(18) 
= 18 mod 7 
= 4

18



Linear Probing: Insert 14
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0

1

2

3

4

5

6

hash(k) = k mod 7

18

hash(14) 
= 14 mod 7 
= 0

14



Linear Probing: Insert 21
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0

1

2

3

4

5

6

hash(k) = k mod 7

18

14

21
hash(21) 
= 21 mod 7 
= 0

Collision occurs! 
Look for next empty slot.



Linear Probing: Insert 1
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0

1

2

3

4

5

6

hash(k) = k mod 7

18

14

21
Collides with 21 
(hash value 0). Look 
for next empty slot.

1
hash(1) 
= 1 mod 7 
= 1



Linear Probing: Insert 35
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hash(k) = k mod 7
0

1

2

3

4

5

6

18

14

21

1

35

Collision, need to 
check next 3 slots.

hash(35) 
= 35 mod 7 
= 0



Linear Probing: Find 35
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hash(k) = k mod 7

hash(35) 
= 35 mod 7 
= 0

0

1

2

3

4

5

6

18

14

21
Found 35, after 4
probes.

1

35



Linear Probing: Find 8

[ CS1020E AY1617S1 Lecture 11 ] 44

hash(k) = k mod 7

hash(8) 
= 8 mod 7 
= 1

0

1

2

3

4

5

6

18

14

21
8 NOT found.
Need 5 probes!

1

35



Linear Probing: Delete 21
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hash(k) = k mod 7

hash(21) 
= 21 mod 7 
= 0

0

1

2

3

4

5

6

18

14

21

1

35



Linear Probing: Find 35
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hash(k) = k mod 7

hash(35) 
= 35 mod 7 
= 0

0

1

2

3

4

5

6

18

14

We cannot simply 
remove a value, 
because it can 
affect find()!

1

35

35 NOT found!
Incorrect!



How to Delete?
 Lazy Deletion
 Use three different states at each slot
 Occupied
 Deleted
 Empty 

 When a value is removed from linear probed 
hash table, we just mark the status of the slot as 
“deleted”, instead of emptying the slot

 Need to use a state array the same size as the 
hash table
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Linear Probing: Delete 21
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hash(k) = k mod 7

hash(21) 
= 21 mod 7 
= 0

0

1

2

3

4

5

6

18

14

21
Slot 1 is occupied 
but now marked 
as deleted.

1

35

X



Linear Probing: Find 35
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hash(k) = k mod 7

hash(35) 
= 35 mod 7 
= 0

0

1

2

3

4

5

6

18

14

1

35 Found 35.
Now we can find 35.

21X



Linear Probing: Insert 15 (1/2)
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hash(k) = k mod 7

hash(15) 
= 15 mod 7 
= 1

0

1

2

3

4

5

6

18

14

1

35

21X
Slot 1 is marked as 
deleted.

We continue to search for 
15, and found that 15 is 
not in the hash table (total 
5 probes).

So, we insert this new 
value 15 into the slot that 
has been marked as 
deleted (i.e. slot 1).



Linear Probing: Insert 15 (2/2)

[ CS1020E AY1617S1 Lecture 11 ] 51

hash(k) = k mod 7

hash(15) 
= 15 mod 7 
= 1

0

1

2

3

4

5

6

18

14

1

35

So, 15 is inserted into slot 
1, which was marked as 
deleted.

Note: We should insert a 
new value in first
available slot so that the 
find operation for this 
value will be the fastest.

21X15



VisuAlgo (Part 1)
 Hash Table with linear probing collision resolution has 

been integrated in VisuAlgo (http://visualgo.net/hashtable)
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Problem 1: Primary Clustering
 A cluster is a collection of 

consecutive occupied slots 
 A cluster that covers the 

home address of a key is 
called the primary cluster 
of the key 

 Linear probing can create 
large primary clusters that 
will increase the running 
time of find/insert/delete 
operations
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0

1

2

3

4

5

6

18

14

1

35

15
consecutive 
occupied 
slots



Linear Probing: Probe Sequence
 The probe sequence of this linear probing is

hash(key) 
( hash(key) + 1 ) % m
( hash(key) + 2 ) % m
( hash(key) + 3 ) % m

⁞
 If there is an empty slot, we are sure to find it
 When an empty slot is found, conflict resolved, but the 

primary cluster of the key is expanded as a result
 The size of the resulting primary cluster may be very big 

due to the annexation of the neighboring cluster
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Modified Linear Probing
 To reduce primary clustering, we can modify the 

probe sequence to
hash(key) 

( hash(key) + 1 * d ) % m
( hash(key) + 2 * d) % m
( hash(key) + 3 * d) % m

⁞

where d is some constant integer >1 and is
co-prime to m
 Since d and m are co-primes, the probe sequence 

covers all the slots in the hash table
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Quadratic Probing
 The probe sequence of quadratic probing is

hash(key) 
( hash(key) + 1 ) % m
( hash(key) + 4 ) % m
( hash(key) + 9 ) % m

⁞
( hash(key) + k2 ) % m
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Quadratic Probing: Insert 18, 3
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0

1

2

3

4

5

6

hash(k) = k mod 7

hash(18) = 4
hash(3) = 3

18

3



Quadratic Probing: Insert 38
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hash(k) = k mod 7

hash(38) = 3

0

1

2

3

4

5

6

Collision!
18

3

38

+1

+4



VisuAlgo (Part 2)
 Hash Table with quadratic probing collision resolution is 

also in VisuAlgo (http://visualgo.net/hashtable?mode=QP)
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Theorem of Quadratic Probing
 How can we be sure that quadratic probing 

always terminates? 
 Insert 12 into the previous example, followed by 10. 

See what happen?
 Try it on VisuAlgo directly

 Theorem: If  < 0.5, and m is prime,
then we can always find an empty slot
 m is the table size and  is the load factor
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Problem 2: Secondary Clustering
 In quadratic probing, clusters are formed along 

the path of probing, instead of around the home 
location

 These clusters are called secondary clusters
 Secondary clusters are formed as a result of 

using the same pattern in probing by all keys
 If two keys have the same home location,

their probe sequences are going to be the same

 But it is not as bad as primary clustering in
linear probing
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Double Hashing
 To reduce secondary clustering, we can use a 

second hash function to generate different probe 
sequences for different keys

hash(key) 
( hash(key) + 1 * hash2(key) ) % m
( hash(key) + 2 * hash2(key) ) % m
( hash(key) + 3 * hash2(key) ) % m

⁞
 hash2 is called the secondary hash function
 If hash2(k) = 1, then it is the same as linear probing
 If hash2(k) = d, where d is a constant integer > 1,

then it is the same as modified linear probing
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Double Hashing: 14, 18 in, Insert 21
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0

1

2

3

4

5

6

hash(k) = k mod 7
hash2(k) = k mod 5

18

14

21
hash(21) = 0
hash2(21) = 1



Double Hashing: Insert 4
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hash(k) = k mod 7
hash2(k) = k mod 5

hash(4) = 4
hash2(4) = 4

0

1

2

3

4

5

6

18

14

21

4

If we insert 4, the 
probe sequence is 
4 (home), 8, 12, …



Double Hashing: Insert 35
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hash(k) = k mod 7
hash2(k) = k mod 5

hash(35) = 0
hash2(35) = 0

0

1

2

3

4

5

6

18

14

21

4

But if we insert 35, 
the probe sequence 
is 0, 0, 0, …

What is wrong?
Since hash2(35)=0.  
Not acceptable!



hash2(key) must not be 0
 We can redefine hash2(key) as
 hash2(key) = (key % s) + 1,   or
 hash2(key) = s – (key % s)

 Note
 The size of hash table must be a prime m
 When defining hash2(key) = (key % s) + 1
 s < m but s need not be a prime
 Usually s = m – 1
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VisuAlgo (Part 3)
 Hash Table with double hashing collision resolution is 

also in VisuAlgo (http://visualgo.net/hashtable?mode=DH)
 Currently, the secondary hash = 1+key%(HT_size-2)
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Good Collision Resolution Method
 Minimize clustering
 Always find an empty slot if it exists
 Give different probe sequences when 2 keys 

collide (i.e. no secondary clustering)
 Fast, O(1)
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Rehash
 Time to rehash
 When the table is getting full, the operations are getting slow
 For quadratic probing, insertions might fail when the table is 

more than half full

 Rehash operation
 Build another table about twice as big with a new hash 

function
 Scan the original table, for each key, compute the new hash 

value and insert the data into the new table
 Delete the original table 

 The load factor used to decide when to rehash
 For open addressing: 0.5 
 For closed addressing: 1 
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Summary
 How to hash? 
 Criteria for good hash functions

 How to resolve collision? 
 Separate chaining
 Linear probing
 Quadratic probing
 Double hashing

 Problem on deletions
 Primary clustering and secondary clustering
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